In 2003, Paul Hebert, researcher at the University of Guelph in Ontario, Canada, proposed “DNA barcoding” as a way to identify species. Barcoding uses a very short genetic sequence from a standard part of the genome the way a supermarket scanner distinguishes products using the black stripes of the Universal Product Code (UPC). Two items may look very similar to the untrained eye, but in both cases the barcodes are distinct. Until now, biological specimens were identified using morphological features like the shape, size and color of body parts. In some cases a trained technician could make routine identifications using morphological “keys” (step-by-step instructions of what to look for), but in most cases an experienced professional taxonomist is needed.
If a specimen is damaged or is in an immature stage of development, even specialists may be unable to make identifications. Barcoding solves these problems because even non-specialists can obtain barcodes from tiny amounts of tissue. This is not to say that traditional taxonomy has become less important. Rather, DNA barcoding can serve a dual purpose as a new tool in the taxonomists toolbox supplementing their knowledge as well as being an innovative device for non-experts who need to make a quick identification. Two gene regions in the chloroplast, matK and rbcL, have been approved as the barcode regions for plants. Source: barcodeoflife.org
Here we retrieved all date palm barcodes sequence excited at NCBI database (138 date palm cultivars characterized by use rbcL and matK genes), all collected data has been showing in the following table.